> Algebra IIB Math
> Lesson: April 8, 2020

Learning Target:
 Students will graph logarithmic functions

Let's Get Started:
Watch Video: Graphing a Logarithm - Made Easy

That was easy?!?!!!!

Key Points:

- Logarithmic functions are INVERSES of Exponential functions

$$
y=\log _{b} x
$$

- The ASYMPTOTE of a logarithmic function is VERTICAL
- If the base (b)>1 then the graph will be INCREASING (GROWTH)

- If the base $0<(\mathrm{b})<1$ then the graph will be DECREASING (DECAY)

Other standard notation:

If no base is given $(y=\log 30)$ then the base is assumed to be 10 .
$\log _{e} x$) is the same as $\ln (x)$. Ln is used for natural logs which are logs with base e. Remember that e is an irrational number approximately equal to 2.718281828459 .

Let's make it easier by using a graphing calculator. Go to www.desmos.com and click Start Graphing.

Type in the parent function $y=\log (x)$

Notice:
The vertical asymptote is at $x=0$
The x-intercept is at $(1,0)$

Changing the base in Desmos

Making Tables in Desmos

Graph $\quad y=-\log _{2}(x+3)-5$

x	$\left(-\log _{2}(x+3)\right.$
-2	-5
-1	-6
0	-6.5849625
1	-7
2	-7.3219281
-3	undefined

You can add numbers to the bottom of the x column.

- List 3 points that can be easily graphed.
- Can you tell from the table where the vertical asymptote is going to be?
- Is that number anywhere in the equation?

You should have noticed that the vertical asymptote is the number inside the parentheses with the x but has the
opposite sign. If you add that number to the bottom of your table, the y-value is "undefined".

Graph each logarithm and identify
a. 3 points that you can easily graph
b. The vertical asymptote
c. The approximate x-intercept
d. The approximate y-intercept (if there is one)

SUPER IMPORTANT HINT!

To type in a fractional base like on the first problem

1. Type in: $y=3 \log (1 / 3)(x)+2$
2. Highlight $(1 / 3)$
3. Press shift underscore
1) $\quad 3 \log _{\left(\frac{1}{3}\right)}(x)+2$
2) $-\log _{3}\left(-\frac{1}{3} x\right)$
3) $-2 \ln (x)+4$
4)
5) $\ln (x+2)$
6) $\quad-2 \log _{\left(\frac{1}{2}\right)}(x-3)-3$
7) $-\log _{3}(3 x-6)$
8) $2 \log _{2}(-x)+5$
9) $\log _{4}(-4 x-8)-4$
10) $\quad \log _{4}(-4(x+2))-4$

Answer to number 1

$3 \log _{\left(\frac{1}{3}\right)}(x)+2$ a. $(1,2)(3,-1)(9,-4)$			
0	undefined	b.	$x=0$
1	2	C.	$(2.08,0)$ hover over intercept
2	0.10721074	d.	none
3	-1		
4	-1.7855785		
5	-2.3949206		
6	-2.8927893		
7	-3.3137312		
8	-3.6783678		
9	-4		

